Skip to main content

Electrical Circuits for Kids - What is Electric Circuit?


  • Do you have a flashlight? 
  • Have you ever looked inside it? 

A flashlight won't light up unless there are batteries inside.
When you switch it on, the batteries make an electric current flow.
This current flows through the bulb and makes it light up.
When you switch on a flashlight, the batteries inside create an electric current by making electrons move. The electric current flows out of one end of the battery, through the bulb, and then back into the battery.
As long as the current can move freely around this pathway, the bulb will light up.
We call this kind of pathway an electric circuit.
While the flashlight is switched on, the current continues to flow around and around the circuit. Turning the switch off makes a break in the circuit. Now the current can't flow, and the light goes out.

Electric Circuit experiment

You will need:

  • two pieces of plastic-coated wire, about 8 inches (20 cm) long, with bare ends
  • a screwdriver 
  • masking tape 
  • a 1.5-volt("D") battery
  • a 1.5 volt battery bulb holder

Which bulb will light up?
An electric current won't flow if it can't make a complete trip around a circuit.
You can test this for yourself.
Set up the simple circuits shown below.
Can you guess which one will make the bulb light up?

1. Tape one end of a piece of wire to the top battery terminal.
Connect the other end of this wire to one side of the bulb holder.
Does the bulb light up?
Electric Circuit experiment for kids Part 1

2. Now connect the other circuits shown here.
Electric Circuit experiment for kids Part 2

Which one is a complete circuit?

Positive and negative terminals

A battery has two connections where the electric current flows in or out.
These connections are called terminals.
Sometimes, as in most flashlight batteries, the terminals are on either end of the battery. Other batteries have both terminals on one end.

  • One terminal is marked + (plus). 
  • The other terminal is marked — (minus). 

The electric current flows out of the terminal marked plus, the positive terminal.
The current flows into the terminal marked minus, the negative terminal.

Comments

Popular posts from this blog

Morse Code for Kids and Morse Code Alphabet

In 1832, an American artist sailed home from Europe. He had spent some time painting in Europe and hoped to sell his pictures when he arrived home. His name was Samuel Morse.
The journey on the ship was to change Samuel Morse’s life.

Read more: How to make a morse code machine...

He met a young chemist from Boston, named Charles Jackson, who showed him how an electromagnet works. Morse became interested in electricity and in the idea of sending messages along electric wires.
Samuel Morse was one of the first people to make an electric telegraph. 
An electric telegraph uses an electric current to send messages along a wire.

Operators of this electric telegraph machine sent messages down the line in Morse Code.
Morse Code Alphabet This telegraph was not what made Morse famous. He gave his name to the code of dots and dashes which he invented.
Until this time, most long distance messages were sent by semaphore.
The problem with the electric telegraph was that an electric current can be arra…

Heliograph - Communicating by light

What is Heliograph? Sometimes when you are in open country, you may catch a flash of sunlight on the windshield of a car many miles away.
The windshield acts like a mirror and reflects the light.
You have probably shone a flashlight beam against a wall or ceiling and watched the spot of light.
Cover the mirror or flashlight with your hand, and the light disappears.

Put these two ideas together, and you have one of the oldest ways of communicating in the world—signalling by the light of the sun.
The ancient Greeks signaled to each other in this way.
They used an instrument called a heliograph. 
The name comes from the ancient Greek words for “sun” and “writing.”
A heliograph can be seen up to 30 miles (48 kilometers) away on a clear day without a telescope. The modern heliograph is mounted on a tripod, like a camera.
It can turn in any direction.
The mirror flashes when it is directed at the sun and can then be dipped away or covered with a shutter.
If the signaler wants to send a mess…

Semaphore Alphabet

Throughout history, armies and navies have sent messages across battlefields.
Simple orders like “Advance” or “Retreat” could be given by bugle calls or cannon-fire.
But sending reports of the battle back to headquarters needed a different system. During the 1790’s, a Frenchman called Claude Chappe invented a signaling system called semaphore. This was a system of sending signals by means of two jointed arms at the tops of tall posts. These arms could be moved to different positions to show different letters of the alphabet. Each semaphore station was built on a hill so that it could be seen, using a telescope, from the next station in any direction. In this way, messages could be relayed over long distances from one station to the next.
Semaphore stations on the coast would send messages to ships at sea. On the battlefield, there might not be a semaphore station, but messages could be sent by stationing signalers with large flags on nearby hills.
They used the same code as the semaph…